
BoardRoom presents

Governance smart-contracts for decentralized investment funds

Presentation Agenda

 1) BoardRoom - project and design pattern (Nick Dodson)

 2) ARES Protocol - design and implications (Dino Mark)

 3) Planning, roadmap, contact information (Nick)

BoardRoom.to Governance Project

1

BoardRoom Mission

To make smart-contract governance generic and accessible to everyone.

BoardRoom.to Governance Project

1

BoardRoom.to Governance Project

1

BoardRoom
Design Pattern

BoardRoom.to Governance Project

1

- Composability
- Simplicity: 1 contract, 2 interfaces
- Modularity, evolutionary: entire rulesets and structures can be swapped (in

1 TX.)
- Parsimony: complex rules, simplified execution

- Clarity/transparency: readable, predictable, comparable rule interfaces
- Identity persistence (via proxy)
- Robustness: generic design
- Ease of assembly
- Common interfaces: saves time on UI/contract design
- Extensible/diverse: hundreds of rulesets can be generated

BoardRoom Features

Interface Design

BoardRoom.to Governance Project

1

contract Board {

 function newProposal(string _name, address _proxy, uint

_debatePeriod, address _destination, uint _value, bytes _calldata)

public returns (uint proposalID) {}

 function vote(uint _proposalID, uint _position)

public returns (uint voteWeight) {}

 function execute(uint _proposalID, bytes _calldata) public {}

 function changeRules(address _rules) public {}

}

contract Rules {

 function canExecute(address _sender, uint _proposalID) public

constant returns (bool);

 function canVote(address _sender, uint _proposalID) public constant

returns (bool);

 function canPropose(address _sender) public constant returns (bool);

 function votingWeightOf(address _sender, uint _proposalID) public

constant returns (uint);

}

github.com/boardroom-project/boardroom-contracts

Example: OpenRules.sol

BoardRoom.to Governance Project

1

github.com/boardroom-project/boardroom-contracts

Import “BoardRoom.sol”;
import "Rules.sol";

contract OpenRules is Rules {
 function canExecute(uint _proposalID) constant returns (bool) {
 BoardRoom board = BoardRoom(msg.sender);
 uint nay = board.positionWeightOf(_proposalID, 0);
 uint yea = board.positionWeightOf(_proposalID, 1);

 if(yea > nay) {
 return true;
 }
 }

 function canVote(address _sender, uint _proposalID) constant returns (bool) {
 return true;
 }

 function canPropose(address _sender) constant returns (bool) {
 return true;
 }

 function votingWeightOf(address _sender, uint _proposalID) constant returns (uint) {
 return 1;
 }
}

BoardRoom.to Governance Project

1

- BondRules: required proposal bonds
- DelegatedVotingRules: delegated voting
- LiquidDemocracyRules: complete liquid democracy rules
- SingleAccountRules: single account controls all
- MultiSigRules: a wallet, with signatories
- MetaRules: proposal types, each with their own Rules contracts
- OpenRules: anyone can vote, propose, execute
- WeiFundRules: weifund campaign contributors > members
- CuratorRules: curated proposals
- TokenFreezerRules: required frozen tokens
- ARESRules...

Example Rulesets github.com/boardroom-project/boardroom-contracts

Introducing:

ARES Protocol

Smart-contract governance for investment funds and collaborative decision
making (without curators).

BoardRoom.to Governance Project

1

ares.sh/white-paper

DAO 2.0?

ARES Protocol

Improves on the old: through simplification, better game theory, and the use of
BoardRoom design patterns.

BoardRoom.to Governance Project

1

ARES Protocol | Basic Structure

No Curators

Bonded Proposals

Instant Withdrawals

Grace Periods

Rule Change Votes

Dynamic Quorum

Anti Re-Entrancy Safe-Sends

Modular Design allows future in-flight upgrades
BoardRoom.to Governance Project

1

ARES Protocol | Thwarting Tyranny

BoardRoom.to Governance Project

1

Attacked
Formation

Transfer
Formation

Normal user

Normal user

Attacker

Attacker

Users can burn and buy in, the attacker is not invited.

e.g. Tyranny
tabled malicious
prop. to steal
funds

All users invited,
except the
tyranny accounts.

Contract Design

BoardRoom.to Governance Project

1

Fund.sol

transfer_ownership
setToken
forward_transaction

BoardRoom.sol

newProposal
vote
Execute
changeRules

ARESRules.sol

changeVariables
configureBoard
postBond
sendFailedBond
widthrawBond
claimVariableChangeWinner

HoldingToken.sol (ERC20)

purchaseTokens
holdForVoting
burnAndWithdrawETH
transfer
transferFrom
approve

ARES Additional Features

Early warning detection systems (email, sms, community policy), proposal and

social policy, social and transactional data collection/research,

prototype before polish (testing at small scales).

BoardRoom.to Governance Project

1

BoardRoom.to Governance Project

1

1. March - Multi third-party audit

2. Late March - Bug bounty

3. Late April - UI/Warning Systems/Social Policy

4. Early May - Ethjs-dao (small scale community DAO)

5. July - Formal verification begins

6. August - Data research release

RoadMap 2017

WARNING!

Do not attempt, in any way, to launch an ARES “DAO 2.0”.

We must conduct more research before we can verify its safety.

This protocol and design is highly experimental.

BoardRoom.to Governance Project

1

BoardRoom.to
github.com/boardroom-project

follow @GoBoardRoom

Ares.sh
github.com/ares-protocol

ares.sh/white-paper

BoardRoom.to Governance Project

1

Nick Dodson
github.com/SilentCicero

follow @IAmNickDodson

Dino Mark
github.com/ares-protocol

